CHROMATOGRAPHIE GENERALITES

Introduction

1 Définitions

2 Classification

- 2.1 Suivant la nature des phases
- 2.2 Suivant le mécanisme d'échange
- 2.3 Suivant le procédé utilisé

3 Théorie de base de la chromatographie

- 3.1 Théorie des plateaux
- 3.2 Théorie cinétique

4 Chromatogramme – grandeurs caratéristiques

- 4.1 Grandeurs caractéristiques
- 4.2 Facteur de séparations ou de sélectivité α
- 4.3 Nombre de plateaux théoriques N → Efficacité (largeurs des pics)
- 4.4 Résolution
- 4.5 Facteur d'asymétrie

5 Facteurs affectant la rétention

- **5.1 Polarité**
- **5.2 Température**
- 5.3 Débit

6 Optimisation en chromatographie

- **6.1 Influence de** α sur Rs (K' et N cte)
- 6.2 Influence de k sur Rs
- 6.3 Influence de N sur Rs

7 Analyse quantitative

- 7.1 Etalonnage externe
- 7.2 Etalonnage interne

8 Domaines d'applications

Introduction

> Historique :

- o 1903 : Tswett sépare des pigments végétaux (chlorophylles) sur une colonne remplie de CaCO3 (phase stationnaire) + solvant (phase mobile)
- o Observation →les composés se séparent en pls zones colorées_parce qu'3 des interactions ≠tes avec la PS(phase stationnaire) et la PM (phase mobile).

1 Définitions

•chromatographie =

 Techniques de séparation des constituants d'un mélange homogène qui est basée sur un processus de migration différentielle, où les analytes se répartissent en 2 phases, l'une mobile par rapport à l'autre (φs et φm).

• Chromatogramme =

- o signal enregistré en fct° du volume d'élution
- phase stationnaire(φ s) =

phase qui reste en place ds une colonne ou sur une plaque

•phase mobile(φ m) = éluant

phase qui se déplace sur ou à travers la φs elle entraîne les constituants à analyser

•éluat =

solution recueillit à la sortie de la colonne

la chromato permet l'identification et le dosage des substances

•élution=

processus au cours duquel on sépare les phases

2 Classification

2.1 Suivant la nature des phases

•chromato en phase liq:

PM=liq PS=solide (LS)

PS=liquide (LL)

PS=résine échangese d'ion

PS=Gel

•chromato en phase gazeuse:

PM=gaz PS =solide (GS)

PS = liquide (GL)

2.2 Suivant le mécanisme d'échange

> Coefficient de distribution Kd du soluté entre φs et φm :

Kd =Cs/Cm =conc du soluté ds φs/conc ds φm

c'est parce que les Kd sont ≠ que les substances se séparent

- > Chromatographie:
 - o d'absorption (L/S)
 - o de partage (L/L)
 - o d'échange d'ion
 - o d'appariement d'ion
 - o exclusion diffusion ou exclusion stérique

2.3 Suivant le procédé utilisé

- > Selon la présentation de la PS :
 - o Colonne: CPG, HPLC,
 - o Planaire : φs de faible épaisseur ,gde surface→papier ou couche mince (CCM)
- > Selon les modalités de migration de la φm :
 - o chromato d'élution :
- →on poursuit l'élution jusqu'à ce que les solutés soient entraînés en dehors de la \(\phi \)s
 - o développement :
- \rightarrow l'élution des substances est telle que les substances demeurent sur ϕ s et sont localisées sur ϕ s

3 Théorie de base de la chromatographie

Fig 5

3.1 Théorie des plateaux

- On assimile la colonne chromato à une colonne à distiller de longueur L
- Cette colonne est constituée de qlq plateaux fictifs appelés plateaux théoriques
- ➤ Une colonne est constituée de N plateaux théoriques (de même hauteur)
- La taille des plateaux, H, est appellée Hauteur équivalente à 1 plateau théorique (HEPT)

$HEPT = L/N \quad (1)$

- ➤ Chaque plateau contient 1/Neme de la PM et de la PS
- > Ds chaque plateau, il y aurait un eq parfait Kd vs [soluté] ds φs et φm

Kd=Cs/Cm

64 mg ds colonne	plateau 2	plateau 3	plateau 4
$T1 \rightarrow 32 \text{ ds } \varphi s$	32 ds φm		
T2 →	16 ds φs	16 ds φm	
T3 →		8 ds φs	8 ds φm

[→]pic de forme gaussienne

chaque plateau est un disque fictif ds lequel on considère qu'il y a eq entre ϕm et ϕs au départ ,le soluté se partage ds le 1 er plateau entre ϕs et ϕm en fct de Kd au 2 em eq ,puisque la ϕm circule en continu ,l'eq est rompu ϕm qui contenait le soluté descend vers 2 em plateau ,se fixe sur ϕs en respectant le partage de Kd

2 substances qui ont des Kd identiques, se répartissent différemment → séparation

à chaque étape correspond un nouvel eq

résultat →pic de forme gaussienne cette théorie est insuffisante car :

elle ne tient pas compte de la vitesse φm/φs

3.2 Théorie cinétique

dispersion des pics ds la colonne

→phéno de diffusion
dispersion fct° de la vitesse de la φm
les pics s'établissent à mesure qu'ils descendent ds la colonne
Eq de Van Deemter pour CPG,
Étendue par Knox à la CLHP

$$HEPT = A + B/u + C*u (CPG)$$
 (2)

$HEPT = A.v^{1/3} + B/v + C*v \text{ (HPLC)}$

H :hauteur équivalente à 1 plateau théorique H=L/N =longueur de la colonne /nbre de plateau

+ la colonne est effi ,+ \exists de plateau (N gd) + la hauteur H est faible

cette équation montre que l'étroitesse des pics est liée à l'écoulement de la \varphim

u : vitesse d'écoulement de φ m =L/To

A : terme de remplissage (diffusion turbulente)

Effet de chemin multiple (diffusion d'Eddy)

+ effet de diffusion latérale (dispersion de flux)

les φs étant constituées de grains irrégulier ,le remplissage sera irrégulier et les m* peuvent emprunter des chemins ≠ts.

minimiser si particules de formes régulières et ayant ttes la même taille (rare)

diffusion latérale :les solutés vont d'un chemin de flux à l'autre

B: terme de diffusion longitudinale

 $=2\gamma Dm$

Dm :coefficient de diffusion de la m* de soluté ds φm

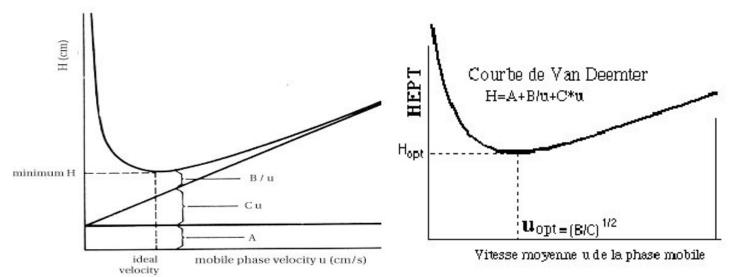
Etalement des m* de soluté ds la φm même si ∃pas d'influence externe Dm est + importante en CPG qu'en CPL

γ : facteur de tortuosité lié à la granulométrie et à la régularité du remplissage

C : terme de transfert de masse

Inégalité de passage d'une m* de soluté d'une phase ds l'autre

Grain de φs constitué de pores ctnt φm stagnante


Diffusion selon pénétration des m* vitesse ≠tes

→ Ces termes A B et C expliquent que les pics soient + larges L'élargissement dpd de la vitesse de la φm

 \rightarrow H=f(u) représentation graphique \rightarrow hyperbole (dispersion)

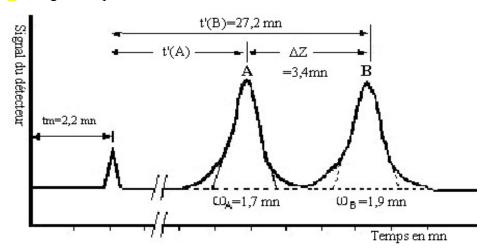
si H élevé pic large – Au minimum H, l'efficacité de la colonne est maximale.

Uo : débit pour lequel les pics sont les + étroits possible

4 Chromatogramme – grandeurs caratéristiques

Fig 3 & 4

- > Si détecteur à la sortie de la colonne, on peut enregistrer le signal en fct° du tps :
 - o signaux =pics
 - o l'ensemble=chromatogramme
- Les pics ont une forme, dans le cas idéal, gaussienne (4)
- La substance éluée est localisée ds une tranche faible de la colonne avec une valeur Yo
 - →2 pts d'inflexion E et F


situés à 60.7% de la hauteur du pic

caractérisés par 2 = distance entre E et F (écart type)

largeur : $\delta = 2.35\sigma$

largeur à la base: $\omega = 4\sigma$

- On caractérise un chromatogramme par certains paramètres impt :
 - \circ $T_0 = \text{temps mort}$
 - o Tr = temps de rétention
 - o h = Hauteur du pic
 - \circ ω = Largeur du pic (intersection des tangentes des pt d'inflexion et des abscisses)
 - o δ = largeur du pic à mi-hauteur

4.1 Grandeurs caractéristiques

Tr tps de rétention

Vr volume de rétention

K' facteur de capacité, de rétention

Tr brut : tps écoulé depuis l'injection du composé ds la colonne et le max du pic chromatographique (min. ; sec. ;10ème de sec.)

To Tps mort =tps que mettrait un composé non retenu pour arriver au détecteur

Tr' tps de rétention corrigé ou réduit

 $\mbox{\sc Vr}$ brut : volume de ϕm qu'il faut $\mbox{\sc faire}$ passer ds la colonne pour amener le pic à sa conc max ds le détecteur

K facteur de capacité, de rétention

K'=(Tr1 - To)/To = tps de rétention réduit /to

⇔rapport molaire entre qtité de soluté ds la φs et ds la φm

⇔tps passé par le soluté ds φs / tps ds φm

K':

En CLHP doit être compris entre 1 et 10

Dpd du couple φs/φm ,de la T° (action sur la viscosité φm)

En CPG doit être compris entre 1 et 20 dpd de la nature de la φs

K' ne dpd pas : de la longueur de la colonne

Du <mark>débit de la φm</mark>

4.2 Facteur de séparations ou de sélectivité a

mesure le potentiel à séparer 2 composés

(cela ne suffit pas pour savoir si séparation finale possible)

sélectivité de 1 à 2 :

 $\alpha 1.2 = (Tr2-To)/(Tr1-To) = K'2/K'1$

relié à la séparation au sommet des 2 pics

+ les pics sont séparés + a est gd

2 colonnes qui présentent la même sélectivité peuvent séparer différemment les mêmes produits (largeurs des pics ≠tes)

Sélectivité=paramètre très important qu'il faut ajuster au début de l'optimisation d'une méthode

Elle dépend :

En CLHP du couple φs/φm

En CPG de φs et de T° du four, φm a un rôle passif

Elle ne dpd pas de la granulométrie ni du débit de la gm

4.3 Nombre de plateaux théoriques N → Efficacité (largeurs des pics)

mesure de la dispersion du pic colonne efficace si pics étroits

nbre de plateaux théoriques : $N=16(Tr/\omega)^2 = 5.54(Tr/\delta)$

N varie en fct° de la méthode

 ω =largeur du pic à la base, obtenue par extrapolation des tangentes aux points d'inflexion δ =largeur du pic à mi-hauteur

 \rightarrow + un pic est étroit ,+ ω et δ sont faibles ,+ le nbre de plateau théorique N est important

N dépend:

- o de la longueur de la colonne
- o de la granulométrie → plus les grains sont petits, + la perte de charge est impt
- \circ de l'épaisseur du film de ϕ s
- →film sur paroi ou sur support
- →si film épais ,le partage est + lent , les échanges sont + lents ,les pics sont + larges
- o de la T° (CPG) et de la viscosité du solvant (CLHP)
- o du débit de gaz vecteur (voir de la courbe de Van Deemter
- o du type de composé

4.4 Résolution

Rs= $\frac{2(\text{Tr}2-\text{Tr}1)/(\omega 1+\omega 2)}{1+(\omega 1+\omega 2)} = 1.18 (\text{Tr}2-\text{Tr}1)/(\delta 1+\delta 2) = \frac{1/4 [\alpha - 1/\alpha][K'2/(1+K'2)]x}{1+(\omega 1+\omega 2)} = \frac{1}{1+(\omega 1+\omega 2)$

Mesure de la qualité de la séparation Rs doit être > 1,5 pour que 2 cp soit séparés.
$$R = \frac{1}{4} \left(\frac{\alpha - 1}{\alpha} \right) \left(\frac{k_{\rm B}}{1 + k_{\rm B}} \right) \sqrt{N_{\rm B}}$$

4.5 Facteur d'asymétrie

As=Y /X ou facteur de traînée

On mesure à 10% du pic le rapport des distances Y/X A 0.05% on mesure $As=\omega/2f$ Qd mesure parfaite $\omega=2f$ $\rightarrow As=1$

En CPG : un composé est retenu qd interaction à φs En CLHP : interaction soluté /φs ; soluté /φm ; φs/φm

La rétention dpd : polarité ,T° ,débit

5.1 Polarité

=capacité de donner ≠tes actions =résultante de ≠tes interactions

> Interactions:

o Forces coulombiennes:

interactions électrostatiques qui interviennent pour force ionisées

o Interaction entre dipôle permanent et dipôle induit

atomes ou ion chargé qd approche autre m*→induit formation d'un dipôle

o Force de dispersion ou de London

présentes ds ttes les m*

attraction entre 2 dipôles instantanée

ds ttes les m* ∃ mvmts des e- autour du noyau →responsable des interactions hydrophobes (apolaires)

énergies des liaisons	Kj/mol
dispersion	5 à 20
dipôle permanent /dipôle induit	8 à 25
dipôle permanent/dipôle permanent(LH)	25 à 40
liaisons ioniques	250 à 1050
ces forces sont très solides	

une m* polaire attire tjrs 1 m* polaire , une m* apolaire attire une m* polaire ou moyennement polaire

important : une polarité idq peut faire intervenir des forces d'interaction ≠tes →possibilité de séparation

5.2 Température

affecte les équilibres

Kd est fct° de T°

Rôle + important en CPG qu'en CLHP

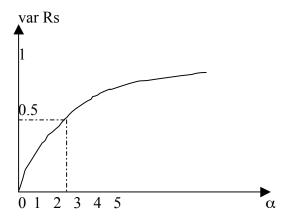
Si T°↑,Tr↓

5.3 Débit (P°)

Tr ↓ qd débit ↑

6 Optimisation en chromatographie

Optimiser =avoir la résolution que l'on souhaite avec un tps min d'analyse


Rs= $1/4 [\alpha - 1/\alpha][K'2/(1+K'2)]x \sqrt{N2}$

La résolution est fct° de

- α (sélectivité)
- 2 : le plateau le + retenu
- →il faut une sélectivité min pour qu'il y ait résolution
- •N2 (largeur des pics)

6.1 Influence de α sur Rs (K' et N cte)

α =K'2/K'1	variation de Rs avec α -1/ α
1	0
1.1	0.09
1.2	0.16
1.5	$0.33 \ \ \ \ (x3.5)$
2.0	0.50
2.4	0.58 🗸
3.0	0.66
4.0	0.75
5.0	(ب 0.80
6.0	083 \(\forall \text{variation bcp} - \text{gde}\)

 α est un paramètre très important qu'il faut ajuster au début de l'optimisation d'une méthode

6.2 Influence de K' sur Rs (avec α et N cte)

K'2	variation de Rs avec K'2 /(1+K'2)		
0	0		
0.1	0.09		
0.2	0.16		

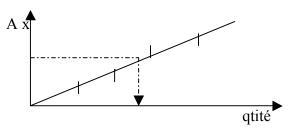
0.3	0.23		
0.5	0.33		
1.0	0.50		
2.0	0.67		
3.0	0.75		
4.0	0.83		
10.0	0.90		
var Rs			
0.5			
0 1 2 3 4	5 6 7 8 9	10	→ K'2

Qd K'2 dble au début Rs ↑ moins rapidement qu'avec α

6.3 Influence de N sur Rs (avec α et K' cte)

Rs varie avec $\sqrt{N2}$ Si la longueur de la colonne est $x2 \rightarrow N=x2$, Rs= x1.4 ($\sqrt{2}$), tandis que Tr=x2

7 Analyse quantitative (+exo)

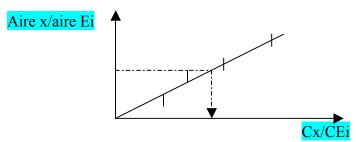

Comparaison aires (ou hauteurs) des pics de l'ech inconnu / gamme étalon de l'analyte

7.1 Etalonnage externe

Gamme d'étalonnage (5 conc min)

5 injections successives

mesure cuve de l'analyte trace dte d'étalonnage cuve=f(qtité) ou f(c)


$$qtité = (c) x v$$

mesure de l'aire analyte ds l'ech satisfaisant si volume injecté très répétable ,sinon étalonnage interne

7.2 Etalonnage interne

mesure des aires analytes et Ei ds étalon ; calcul du rapport des aires analyte/Ei tracé de la dte

Mesure des aires analytes et Ei ds l'ech :rapport des aires

 \rightarrow permet de s'affranchir des variations de volumes injectés surtout ut en CPG car vol injectés (à la seringue) faibles (de 1 à 5 μ L) vs CLHP 20 μ l

en électrophorèse capillaire, les volumes injectés sont de 2 à 20 µL

ut en CLHP qd travaille avec matrice complexe

→permet aussi de tenir compte des pertes à l'extraction ds les ech complexes à analyser

ds un ech bio , le labo de \$ organique va prendre un prod de la même famille chimique que l'analyte.

7.3 Méthodes des ajouts dosés

(voir spectro UV)

<u>NB</u>: analyse qualitative via le tr pour les échantillons simples (sinon via détecteur UV, SM...)

8 Domaines d'applications

CPG:

- o applicable aux substances volatiles ou volatilisables par élévation de T°
- o non applicable aux substances ioniques ou de MM>300 car non volatiles
- o non applicable aux substances thermolabiles
- o mais existence d'un détecteur universel de fble coût (ionisation de flamme)

> CLHP:

- o ts types de substances (ioniques ou non ,thermolabiles ou non PM)
- o cdt° minimun : composé soluble ds PM
- o manque détecteur universel de fble coût (3 spectromètre de masse mais coûteux)